<u>Multiscale Spatio-temporal</u> <u>Dynamics of the Global Internet</u>

Anja Feldmann (Saarland University)

Jim Cowie (Renesys Corp.)
Ingrid Daubechies (Princeton University)
David Nicol (Dartmouth College)
Andy Ogielski (Renesys Corp.)
Walter Willinger (AT&T)

Project overview

Goal: Global Network Situational Awareness

need explanatory and predictive views of networks

Challenges: Collecting, Integrating, Representing

large, diverse, distributed network data

New ideas: Multi-resolution analysis of real/simulated

networks across multiple time scales, topology and

protocols with focus on structural mechanisms of the

Internet

Today's topic: Model validation

- From measurements to models to simulations
- □ Examples:
 - OSPF
 - Web traffic
 - BGP

OSPF package added to SSFNET

- Dynamic OSPF capabilities
 - Hello Protocol
 - Database Exchange
 - Flooding
 - Shortest Path calculation
 - Multiple areas
 - Protocol interactions
- Dynamic OSPF limitations
 - Point-to-point links only (other link layers in the works)

Protocol conformance testing

- Identify fault models and important input combinations
- Identify test purposes according to fault models and protocol specification
- Design test cases for each test purpose
- Draw conclusions from tests (no exhaustive testing...)

OSPF validation: strategy

- Formal testing methodologies
 - Drawback: strict requirements on protocol specification and input specification, translation from informal language to formal language
 - 548 test cases
- □ Informal testing
 - InterOperability Lab Test Suite (U of New Hampshire)
 - Drawback: no completeness proof
 - Advantage: used for real router testing
 - 78 test cases

OSPF validation: categories

- Basic interconnection tests
- Capability tests
- Behavior tests
- Conformance resolution tests
- Other test types (performance/robustness/format)

OSPF validation: SSFnet additions

- Changing of OSFP configuration during simulation
- Shutting down and restarting OSPF router
- Simulated link failures
- Modification of packet header fields
- Test specific features

OSPF validation: results

- □ Possible outcome: PASSED/INCONCLUSIVE/FAIL
- Most FAILS/INCONCLUSIVE due to missing features of simulation setup (e.g., lack of multicast support)
- □ Some INCONCLUSIVE due to preliminary implementation (e.g., summary LSAs)
- Lessons learned
 - Trustworthy implementation of OSPF
 - · Same criteria as actual routers
 - Helped enormously with debugging
 - Two different people for testing/implementation

Web traffic: from measurement to simulation

□ Idea

- Observe user perceived latency from active Web page downloads
- Rebuild scenario in a simulator
- Observe user perceived latency from the simulator
- Compare the results

Web traffic: Approach

- Web pages
 - Top 100 web sites (according to some measure)
- Active downloads
 - Multiple downloads from multiple locations
 - Multiple protocol versions
 - Different access speeds
 - Different time of day/time of week
 - Tcpdump trace

Web traffic: Approach (cont.)

- Simulation scenario
 - Extract Web page/embedded objects
 - Estimate parameters:
 - Topology: simple network single client/multiple servers
 - · Link parameters: delay/bandwidth
- Compare the results
 - For measurements with/without drops
 - Explain outliers
 - Protocol version not supported
 - Network conditions
 - Server behavior
 - Simulator limitations
 - Sensitivity study

Web traffic: Result

□ Lesson learned:

- Decent but not perfect comparison
- O Rebuilding the real world is hard

BGP workload model

- □ Identify structure of BGP traffic
- Basis for BGP workload model
- □ Tool, RTG, realization of workload model
- Characterize structure of BGP traffic
- Verification of tool

BGP workload model: central ideas

- Updates
 - Instability creators
 - Instability bursts
- Changes
 - BGP attributes
- Baseline
 - Routing table
- Correlation
 - AS-Path

BGP updates

- Routing instabilities
 - Session establishment/teardown/reset
 - Parameter change
 - Link failure
 - Addition/deletion of prefixes
 - Prefix policy changes
- □ Instability creator
 - Two peering ASs, AS, Prefix
- Instability event
 - update bursts for set of prefixes
- Update burst:
 - Single prefix, Set of updates

BGP workload realization

- Idea
 - Generate updates off-line (stored in file): RTG
 - Feed them to system
- □ RTG
 - Build routing table
 - Routing table size and characteristics
 - Generate BGP attributes
 - AS, AS-path characteristics
 - Create BGP updates
 - · Event log: session reset, update burst, single update
- Parameters
 - Configuration files (automatic, semi-manual, manual)
- Drive simulation/test system

Summary

- Exploring Internet dynamics via
 - Measurements
 - Analysis (seeking global effects from noisy data)
 - Modeling/validation and analysis of protocol behavior

A spectrum of new capabilities enable us to investigate the vulnerability of the routing infrastructure

Backup

BGP Metrics: updates

- Updates
 - Interarrival time, attribute change
- Update bursts
 - Interarrival time, duration, # of updates
- Session resets
 - Interarrival time, duration, # of prefixes

BGP routing table

Prefix forest

Metrics: BGP routing table

- Routes within IP address range
- Prefix length
- Prefix depth
- Prefix fanout
- □ Prefix distance

BGP AS

- Correlation:
 prefix structure and routing instabilities
 - AS, AS-path
- Characterization AS
 - # of originating routes
 - # of transiting routes
 - Distance of AS to peer
- Characterization AS-path
 - Length
 - Number of unique ASs
 - Position of replicated ASs
 - Number of replicated ASs